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Abstract

For an unsteady forced convection on a flat plate embedded in the fluid-saturated porous medium with inertia effect

and thermal dispersion, this paper presents a precise and rigorous method to obtain the entire solutions from one-

dimensional transient conduction (n ¼ 0) to steady forced convection in porous medium (n ¼ 1) under conditions of

uniform wall temperature and uniform heat flux, respectively. It is worth noted that the rate of unsteady heat transfer

can be accelerated by the thermal dispersion, which may be regarded as the effect of mixing or agitating, to enhance the

heat transfer in porous medium. Additionally, it is found that the time response, from the transient heat conduction to a

steady forced convection in Darcy’s flow, is s ¼ 1, and is independent of wall heating condition and thermal dispersion

strength (/). � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

For such wide applications, as geothermal survey

and designs of high temperature insulation, packed re-

actor or absorbent, and thin film separation in chemical

processes, a large number of studies have been con-

ducted on the heat and mass transfer in porous medium

[1].

Owing to the adding time effect, the transient heat

transfer is usually difficult to solve with either an ana-

lytical approach or numerical method. Therefore, most

results were limited in the area of steady thermal con-

vection, and only a few solutions were obtained for the

case of non-steady state in the previous work. As for

unsteady forced convection in a porous medium, by

means of a second-order upwind, Kimura [2] solved the

problem of transient heat transfer in Darcy flow. Nak-

ayma and Ebinuma [3] studied the inertia effect on the

transient forced convection for a suddenly heated plate

by using the Forchheimer-extended Darcy law, where

the fluid flowing starts at the same time when the heating

starts, and applied a quasi-similarity transformation.

Additionally, with a scale analysis, Bejan and Nield [4]

obtained solutions for three regimes, namely, the initial

stage, transient period, and steady state during unsteady

heat transfer in Darcy flow.

The aim of the present work is to provide a precise

and rigorous method to study the transient forced con-

vection heat transfer in the Forchheimer-extended

Darcy flow that is steady, parallel and uniform as the

embedded heated plate is suddenly changed with a uni-

form wall temperature or uniform heat flux, and to

quantify the effect of inertia force on the intermediate

regime of unsteady forced convection in a porous me-

dium. Moreover, the object of this study is to refine the

results presented in [4] in order to take into account the

effect of thermal dispersion on the transient heat transfer

in Darcy flow. According to author’s knowledge, this

case has not been investigated yet.
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2. Formulation of problem

Consider a laminar flow of incompressible New-

tonian fluid with constant properties over a semi-infinite

plate in a porous medium. The plate is suddenly heated

and, subsequently, maintains either uniform tempera-

ture (UWT), Tw, or constant heat flux (UHF), qw, over
the surface. Moreover, the system is assumed that:

1. the porous medium is isotropic, homogeneous, and

saturated with fluid;

2. a local thermal equilibrium in system can be

realized;

3. momentum boundary layer is negligible;

4. thermal boundary layer is thin;

5. the conjugate effect on a plate is not considered.

As a result, the transient heat transfer in Forchheimer-

extended Darcy flow that is steady, parallel and uniform

may be mathematically described by

1. Momentum equation

dp
dx

¼ l
K
uþ Lqu2 ð1Þ

in which the pressure drop, �dp=dx, can be induced

from Darcy flow and be expressed as luD=K [1] where uD
is termed as an average velocity in Darcy flow [5]. Ad-

ditionally, both parameters K and L are experimental

constants. It is noted that the velocity field is linearly

related to the pressure drop when the inertia effect is not

significant, that is, L ¼ 0.

2. Energy equation

r
oT
ot

þ u
oT
ox

¼ o

oy
ae

oT
oy

� �
; ð2Þ

Nomenclature

C constant in Eq. (5)

Cp specific heat of fluids in Eqs. (3) and (4)

(J/(m K))

CS specific heat of porous medium in Eq. (3) (J/

(m K))

D particle size in Eq. (5) (m)

f dimensionless velocity, ¼ u=uD
h local heat transfer coefficient (J/(s m2 K))

k thermal conductivity of fluid (J/(s m K))

k0 thermal dispersion conductivity of porous

medium (J/(s m K))

ke effective thermal conductivity in Eq. (7.2),

¼ k þ k0 (J/(s m K))

ks thermal conductivity of porous medium

(J/(s m K))

K; L experiment parameter in Eq. (1)

Nu local Nusselt number, ¼ hx=k
P dynamic pressure of fluids (kgf=m

2)

Pe local Peclet number, ¼ uDx=a
PeD local Peclet number based on particle size,

¼ uDD=a
qw wall heat flux (J/(s m))

ReL inertial strength, ¼ uDKL=m
t time (s)

T temperature (K)

Tw wall temperature (K)

T1 ambient temperature (K)

u velocity component in the x-direction (m/s)

uD average velocity for Darcy flow (m/s)

x coordinate along the wall surface (m)

y coordinate normal to the wall surface (m)

Greek symbols

a effective molecular diffusivity defined in Eq.

(4) (m2/s)

a0 thermal dispersion diffusivity along y
coordinate defined in Eq. (5) (m2/s)

ae effective thermal diffusivity, ¼ a þ a0 (m2/s)

c normalized inertia strength defined in

Eq. (21)

d the thickness scale of dynamic thermal layer

proposed in Eq. (10) (m)

ds a steady thermal layer, � x=Pe1=2 (m)

dt the initial thermal layer, � ðat=rÞ1=2 (m)

e porosity in Eqs. (3) and (4)

f pseudo-similarity coordinate defined in Eq.

(12)

g similarity coordinate defined in Eq. (22)

h dimensionless temperature defined in Eqs.

(16.1) and (16.2)

k combined variable defined in Eq. (13)

l viscosity of fluids in Eq. (1) (kg/(m s))

n dimensionless time defined in Eq. (11)

q density of fluids in Eqs. (3) and (4) (kg/m3)

qs density of porous medium in Eq. (3) (kg/m3)

r thermal capacity ratio defined in Eq. (3)

s traditional dimensionless time, ¼ uDt=ðxrÞ
u index in Eqs. (14) and (15)

U dispersion strength, ¼CPeD

Subscripts

s steady forced convection

t transient heat conduction

1 a far from wall surface
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where thermal capacity ratio r was defined as

r ¼ eqCp þ ð1� eÞqsCs

qCp

½1
; ð3Þ

and ae ¼ ða þ a0Þ is an effective thermal diffusivity in

which a is an effective molecular diffusivity termed as

a ¼ ek þ ð1� eÞks
qCp

; ð4Þ

and a0 that indicates thermal dispersion diffusivity along

y coordinate was proposed by Plumb [6] as

a0 ¼ k0

qCp

¼ CuD; ð5Þ

where C is a constant ranging from 1/3 to 1/7.

The initial and boundary conditions to satisfy Eq. (2)

can be given as

T ðx; y; t6 0Þ ¼ T1; ð6Þ

T ðx; 0; t > 0Þ ¼ Tw ðUWTÞ ð7:1Þ

or

�ke
oT
oy

� �
ðx;0;t>0Þ

¼ qw ðUHFÞ; ð7:2Þ

and

T ðx;1; tÞ ¼ T1: ð8Þ

In condition (7.2), ke ¼ k þ k0 is an effective thermal

conductivity [7]. Note that Eq. (7.2) will be reduced as ke
¼ k when the thermal dispersion effect is neglected to

investigate the inertia effect on transient heat transfer

over a horizontal surface in Forchheimer-extended

Darcy flow.

Define a dimensionless velocity, f ¼ u=uD, then Eq.

(1) can be recast into

ReLf 2 þ f � 1 ¼ 0; ð9Þ

where ReL ¼ uDKL=m expresses the inertia strength in

Forchheimer-extended Darcy flow. Note that Eq. (9)

may be reduced to f ¼ 1 if ReL ¼ 0 for a Darcy flow

model.

3. Scale analysis of dynamic thermal layer and trans-

formed variables

From the scale analysis of Eq. (2), unsteady forced

convection heat transfer is indeed dominated by one-

dimensional transient heat conduction at initial state as

t ! 0 and a steady forced convection at the final state as

t ! 1. Therefore, with the theory of thermal resistance

in series, a thickness of dynamic thermal boundary layer

can be proposed as

dðx; tÞ � 1

dt

�
þ 1

ds

��1

; ð10Þ

where 1=dt � 1=
p

at=r and 1=ds � 1=x=Pe1=2 indicate the
thermal resistance at the initial (t ! 0) and final stages

(t ! 1), respectively.

To take Eq. (10) as a characteristic length, the di-

mensionless time and coordinate can be, respectively,

defined as

1. Dimensionless time

n ¼ d
ds

¼ 1

0
@ þ

x
ffiffiffiffiffiffiffiffiffi
at=r

p.
Pe1=2

1
A

�1

: ð11Þ

It is noted that the infinite time domain of 06 t < 1 can

be transferred into a finite zone of 06 n6 1 by using Eq.

(11).

2. Dimensionless coordinate

f ¼ y
d
¼ y

x
k; ð12Þ

where k is a combined variable and defined as

k ¼ Pe1=2 þ x=
ffiffiffiffiffiffiffiffiffi
at=r

p
: ð13Þ

4. Non-dimensional unsteady heat transfer equation

By an employment of Eqs. (11) and (12) and the

definition of dimensionless velocity, Eq. (2) can be, re-

spectively, recast, into

h00 þ 1

2
f n3f
h

þ 1ð � nÞ3
i
h0 � u

2
1ð

h
� nÞ3 þ n3f

i
h

¼ 1

2
n 1ð � nÞ 1ð

h
� nÞ2 � n2f

i oh
on

ð14Þ

and

1ð þ CPed Þh00 þ 1

2
f n3
h

þ 1ð � nÞ3
i
h0 � u

2
1ð

h
� nÞ3 þ n3

i
h

¼ 1

2
n 1ð � nÞ 1ð

h
� nÞ2 � n2

i oh
on

ð15Þ

for effects of inertia force and thermal dispersion on an

unsteady forced convection heat transfer in a porous

medium. In Eqs. (14) and (15), dimensionless tempera-

ture h is defined as

h ¼ T � T1
Tw � T1

ðUWTÞ; ð16:1Þ

when index u ¼ 0; and

h ¼ T � T1
qwx=k

k ðUHFÞ ð16:2Þ
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when index u ¼ 1, respectively. Additionally, a notation

of ‘‘0’’ expresses the differentiation with respect to vari-

able f.
The initial and boundary conditions for Eqs. (14) and

(15) can be rewritten as

hðn; 0Þ ¼ 0; ð17Þ

hðn; 0Þ ¼ 1 ðUWTÞ or h0ðn; 0Þ ¼ �1 ðUHFÞ;
ð18Þ

hðn;1Þ ¼ 0: ð19Þ

5. Numerical method

Non-similarity equations (14) and (15) associated

with conditions (17)–(19) and velocities depicted in
Fig. 1. The dimensionless velocity varying with normalized

inertia strength c in Forchheimer-extended Darcy flow.

Fig. 2. Thermal boundary layer growth in a porous medium with inertia effect under condition of UWT.
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Eq. (9) are both solved from the case of transient heat

conduction (n ¼ 0) to another case of a steady forced

convection (n ¼ 1) under conditions of UWT and UHF,

respectively, by a method of lines (MOLs) combined

with the central finite difference and Newton’s iterations.

This fully implicit scheme is special for the coefficient of

oh=on, in which the value can be changed from positive

to negative with increasing dimensionless time, in

the right-hand side of Eqs. (14) and (15). The details of

the calculation procedure have been documented by

Cheng [8].

6. Results and discussion

6.1. With inertia effect

By solving Eq. (9), the inertia effect on velocities in a

porous medium may be described by an exact solution as

f ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ReL

p

2ReL
; ð20Þ

where ReL is termed as the inertia strength. To clarify

a variation of the velocity field in Forchheimer-ex-

Fig. 3. The rate of unsteady heat transfer in a porous medium

with inertia effect under condition of UWT.

Fig. 4. The rate of unsteady heat transfer in a porous medium

with inertia effect under condition of UHF.

Fig. 5. The rate of unsteady heat transfer in a porous medium

with thermal dispersion under condition of UWT.

Fig. 6. The rate of unsteady heat transfer in a porous medium

with inertia effect under condition of UHF.
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tended Darcy flow, the inertia strength is normalized

by

c ¼ 1

�
þ 1

ReL

��1

ð21Þ

so that the range of 06ReL < 1 can be transferred into

the finite area of 06 c6 1. As plotted in Fig. 1, it is

obvious that the dimensionless velocity decreases from

one to zero in a porous medium with inertia effect. This

is in agreement with a conclusion in [3].

By a view of Eq. (14), the inertia effect on the un-

steady forced convection is governed by parameter of

ReL. For cases of ReL ¼ 0, 1, and 10, Fig. 2 displays that

dimensionless temperature h is together with the simi-

larity coordinate

g ¼ y
x
Pe1=2 ¼ fn ð22Þ

under condition of UWT. As exhibited in this figure, the

thermal layer gradually grows with time, and the

thickness of the thermal layer arriving in a steady state

increases with values of ReL from 4 to 10. In other

words, the rate of transient heat transfer will be reduced

if the pore size of medium is made largely, or packing

material is arranged at random in the tower. Figs. 3 and

4 depict the values of

Nu
Pe1=2

¼ �h0ðn; 0Þ
n

ðUWTÞ ð23Þ

and

Nu
Pe1=2

¼ 1

nhðn; 0Þ ðUHFÞ; ð24Þ

respectively, varying with time s ¼ uDt=x. It is clearly

seen that time response from one-dimensional transient

heat conduction to a steady forced convection in a po-

rous medium is increased with the inertia strength.

6.2. With thermal dispersion

Transient heat transfer in Darcy flow with thermal

dispersion is dominated by values of CPeD, called the

Fig. 7. Thermal boundary layer growth in a porous medium with thermal dispersion under condition of UHF.

1568 W.T. Cheng, H.T. Lin / International Journal of Heat and Mass Transfer 45 (2002) 1563–1569



thermal dispersion strength and remarked as /, as

shown in Figs. 5 and 6 under conditions of UWT and

UHF, respectively. Obviously, these diagrams illustrate

that the rate of unsteady heat transfer can be accelerated

by the thermal dispersion that may be regarded as the

effect of mixing or agitating to enhance the heat transfer

in a porous medium. Additionally, as known from these

two figures, it is found that the time required for the

system to change from the transient heat conduction to a

steady forced convection in Darcy flow is s ¼ 1 and in-

dependent of wall heating condition and thermal dis-

persion. Fig. 7 shows dimensionless temperature h vs.

the coordinate g under condition of UHF. As demon-

strated in cases of U ¼ 0, 1, and 10, the time for thermal

boundary layer at a steady state are both n ¼ 0:5. This
trend is consistent with the result in Fig. 6.

For the case of Darcy flow without thermal dispersion

under conditions of UWT and UHF, as analyzed by

Bejan and Nield [4], the full numerical solutions are also

presented to compare with the exact solutions at the ini-

tial and final stages, respectively. As shown in Fig. 8, the

present solutions are very close to the analytical solutions

at the limiting stages of time-dependent heat conduction

and a steady forced convection in a porous medium.

7. Conclusion

A rigorous and precise method has been successful in

obtaining complete and accurate solutions from the

transient heat conduction at n ¼ 0 to a steady forced

convection in a porous medium at n ¼ 1 so that the heat

rate in the middle of unsteady forced convection in a

porous medium with the inertia effect and thermal dis-

persion can be, respectively, examined in detail. It is

worth noting that the effect of thermal dispersion on

transient heat transfer in Darcy flow is first presented to

be investigated in this work.
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